28000613

not suppfights

#GQ8VG008C
28
112/310
II
2401/2500
Chester
Last updated 3 weeks, 1 day ago
Highest Trophies
2,420
Trophies
2,401
3 VS 3 Victories
223
Solo Victories
35
Duo Victories
45
Highest Robo Rumble Lvl Passed
Insane
Highest Boss Fight Lvl Passed
Insane
Most Challenge Wins
0

Brawlers (32/64)

  • 48
    Colette
    800
    Colette
    • Colette
    • Push it
    • Mass tax
    Power11
    Highest940
  • 37
    Chester
    723
    Chester
    • Chester
    • Bell 'O' Mania
    Power11
    Highest732
  • 28
    Fang
    559
    Fang
    • Fang
    • Fresh Kicks
    Power11
    Highest559
  • 4
    Jacky
    69
    Jacky
    Power1
    Highest69
  • 4
    Nita
    69
    Nita
    Power4
    Highest69
  • 3
    Jessie
    57
    Jessie
    Power1
    Highest57
  • 2
    Dynamike
    28
    Dynamike
    Power1
    Highest28
  • 2
    Barley
    24
    Barley
    Power3
    Highest24
  • 2
    Colt
    23
    Colt
    Power4
    Highest23
  • 1
    Shelly
    17
    Shelly
    Power2
    Highest17
  • 1
    Edgar
    13
    Edgar
    Power1
    Highest13
  • 1
    Squeak
    6
    Squeak
    Power1
    Highest6
  • 1
    Penny
    4
    Penny
    • Penny
    • Penny
    • Last blast
    • Balls of fire
    Power9
    Highest4
  • 1
    Colonel ruffs
    3
    Colonel ruffs
    Power1
    Highest3
  • 1
    Gus
    0
    Gus
    Power1
    Highest0
  • 1
    Griff
    0
    Griff
    Power1
    Highest0
  • 1
    Buzz
    0
    Buzz
    Power1
    Highest0
  • 1
    Stu
    0
    Stu
    Power1
    Highest0
  • 1
    Emz
    0
    Emz
    Power1
    Highest0
  • 1
    8-bit
    0
    8-bit
    Power1
    Highest0
  • 1
    Carl
    0
    Carl
    Power1
    Highest0
  • 1
    Rosa
    0
    Rosa
    Power1
    Highest0
  • 1
    Gene
    0
    Gene
    Power1
    Highest0
  • 1
    Frank
    0
    Frank
    Power1
    Highest0
  • 1
    Bo
    0
    Bo
    Power1
    Highest0
  • 1
    Poco
    0
    Poco
    Power1
    Highest0
  • 1
    Mortis
    0
    Mortis
    Power1
    Highest0
  • 1
    El primo
    0
    El primo
    Power4
    Highest0
  • 1
    Brock
    0
    Brock
    Power4
    Highest0
  • 1
    Bull
    0
    Bull
    Power4
    Highest0