28000004

tomar753

#YVP98QQQY
28
39/310
II
2395/2400
Surge
Last updated 8 months, 1 week ago
Highest Trophies
2,397
Trophies
2,395
3 VS 3 Victories
148
Solo Victories
10
Duo Victories
117
Highest Robo Rumble Lvl Passed
Insane
Highest Boss Fight Lvl Passed
Insane
Most Challenge Wins
0

Brawlers (30/64)

  • 17
    Colt
    381
    Colt
    • Colt
    • Colt
    • Slick boots
    • Magnum special
    Power8
    Highest385
  • 16
    Byron
    351
    Byron
    • Byron
    • Malaise
    • Injection
    Power7
    Highest351
  • 14
    Bull
    290
    Bull
    Power7
    Highest290
  • 14
    Surge
    263
    Surge
    • Surge
    • To the max!
    • Serve ice cold
    Power8
    Highest263
  • 14
    Jessie
    261
    Jessie
    Power8
    Highest265
  • 11
    El primo
    161
    El primo
    • El primo
    • El primo
    • El fuego
    • Meteor rush
    Power8
    Highest163
  • 9
    Nita
    134
    Nita
    Power7
    Highest136
  • 9
    Shelly
    130
    Shelly
    • Shelly
    • Shelly
    • Shell shock
    • Band-aid
    Power8
    Highest130
  • 7
    Jacky
    96
    Jacky
    Power7
    Highest96
  • 7
    Rico
    91
    Rico
    Power7
    Highest94
  • 7
    Poco
    86
    Poco
    Power7
    Highest86
  • 5
    Barley
    42
    Barley
    Power7
    Highest42
  • 4
    Frank
    32
    Frank
    Power7
    Highest32
  • 4
    8-bit
    30
    8-bit
    Power7
    Highest30
  • 2
    Brock
    17
    Brock
    Power7
    Highest17
  • 2
    Mortis
    12
    Mortis
    Power7
    Highest12
  • 1
    Gus
    9
    Gus
    Power7
    Highest9
  • 1
    Rosa
    9
    Rosa
    Power7
    Highest9
  • 1
    Colonel ruffs
    0
    Colonel ruffs
    Power7
    Highest0
  • 1
    Edgar
    0
    Edgar
    Power6
    Highest0
  • 1
    Emz
    0
    Emz
    Power7
    Highest0
  • 1
    Carl
    0
    Carl
    Power6
    Highest0
  • 1
    Tick
    0
    Tick
    Power6
    Highest0
  • 1
    Penny
    0
    Penny
    Power7
    Highest0
  • 1
    Darryl
    0
    Darryl
    Power6
    Highest0
  • 1
    Bo
    0
    Bo
    Power1
    Highest0
  • 1
    Dynamike
    0
    Dynamike
    Power7
    Highest0